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Abstract Sodium-dependent glucose co-transporter 2
(SGLT2) plays a pivotal role in maintaining glucose
equilibrium in the human body, emerging as one of the
most promising targets for the treatment of diabetes
mellitus type 2. Pharmacophore models of SGLT2 inhib-
itors have been generated with a training set of 25 SGLT2
inhibitors using Discovery Studio V2.1. The best hypoth-
esis (Hypo1SGLT2) contains one hydrogen bond donor, five
excluded volumes, one ring aromatic and three hydropho-
bic features, and has a correlation coefficient of 0.955, cost
difference of 68.76, RMSD of 0.85. This model was
validated by test set, Fischer randomization test and decoy
set methods. The specificity of Hypo1SGLT2 was evaluated.
The pharmacophore features of Hypo1SGLT2 were different
from the best pharmacophore model (Hypo1SGLT1) of
SGLT1 inhibitors we developed. Moreover, Hypo1SGLT2
could effectively distinguish selective inhibitors of SGLT2
from those of SGLT1. These results indicate that a highly
predictive and specific pharmacophore model of SGLT2
inhibitors has been successfully obtained. Then
Hypo1SGLT2 was used as a 3D query to screen databases

including NCI and Maybridge for identifying new inhib-
itors of SGLT2. The hit compounds were subsequently
subjected to filtering by Lipinski’s rule of five. And several
compounds selected from the top ranked hits have been
suggested for further experimental assay studies.
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Introduction

According to the epidemiologic research worldwide in
recent decades, diabetes is becoming a common and
frequently occurring disease, trending to be a major
public health problem. Globally, 380 million people
might be suffering from diabetes by 2025 [1]. Diabetes
mellitus type 2 (T2DM) accounts for almost 90% of
diabetes cases, with the property of insulin resistance and
beta-cell dysfunction that induces hyperglycemia [2].
Medical complications associated with T2DM include
cardiovascular disease, stroke, nephropathy, retinopathy,
renal failure, and amputations of the extremities [3].
Several therapeutic agents are available for monotherapy
or combination therapy with different mechanisms to treat
diabetics [4]. However, in light of the report by United
Kingdom Prevention of Diabetes Study, only 25–50% of
T2DM patients are effectively treated by current therapies
[5]. The obvious need for new approaches to treat patients
with uncontrolled T2DM has prompted continuous explo-
ration of alternative targets involved in maintenance of
glucose homeostasis.

In recent years, much attention has been given to
sodium-dependent glucose co-transporters (SGLTs), medi-
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ators of reabsorption of glucose in the human body.
Sodium-dependent glucose co-transporter 2 (SGLT2) is a
high-capacity, low-affinity transporter expressed selectively
in the S1 domain of the proximal tubule in the kidney and is
responsible for 90% of renal glucose reuptake. Sodium-
dependent glucose co-transporter 1 (SGLT1), on the other
hand, is a low-capacity, high-affinity transporter distributed in
the kidney, gut and other tissues, responsible for the remaining
10% of glucose reuptake [6]. Inhibition of SGLTs induces
glucose excretion in urine and thereby reduces plasma
glucose concentrations [7, 8]. This mechanism is different
from the currently available diabetic therapies that target
insulin resistance and insulin deficiency, providing a glucose-
dependent and insulin-independent pathway to control hyper-
glycemia. SGLTs have emerged as a very promising approach
to the pathophysiologic treatment of T2DM [4, 7, 9].
Although the inhibition of ubiquitous expressed SGLT1
plays a contributing role, current evidence suggests that
inhibition of SGLT1 should produce gastrointestinal distur-
bances [10, 11]. For instance, the O-arylglucoside natural
product phlorizin, which is a non-selective SGLT inhibitor,
has long been known to cause glucosuria in animals and
humans [12]. Therefore, developing selective SGLT2 inhib-
itors with minimum adverse effects is urgently needed.

In the present study, we have generated pharmacophore
models using Discovery Studio V2.1 (DS) for SGLT2 and
SGLT1 inhibitors, respectively. With the aim to obtain the
specific pharmacophore model of SGLT2 inhibitors that
would provide a hypothetical picture of chemical features
responsible for activity, we compared the features between
the pharmacophores of SGLT2 and SGLT1 inhibitors and
used them as 3D queries for mapping compounds with both
SGLT2 and SGLT1 inhibitory activity. Finally, these results
indicate that a highly predictive and specific pharmaco-
phore model of SGLT2 inhibitors was obtained. The
specific pharmacophore model can be utilized as a
predictive tool for estimating biological activity of SGLT2
selective inhibitors through virtual screen or molecular
designing on the basis of structure-activity analysis.

Materials and methods

Selection of molecules

A set of 110 different SGLT2 inhibitors and 44 different
SGLT1 inhibitors has been collected from different references
[1, 13–29]. Of those compounds, 25 SGLT2 inhibitors and 23
SGLT1 inhibitors, which achieve satisfactory diversity in both
structural and activity ranges, were selected as the training set
for pharmacophore models, respectively. The biological
activity values of the selected 25 SGLT2 inhibitors span a
range of five orders of magnitude (IC50 values ranging from

0.3 to 50000 nM), while the selected 23 SGLT1 inhibitors
span six (IC50 values ranging from 0.17 to 134000 nM).
Chemical structures and experimental IC50 values of training
set molecules of SGLT2 inhibitors and SGLT1 inhibitors are
given in Fig. 1 and Fig. S1 (see Supplementary material),
respectively. The remaining 85 SGLT2 inhibitors and 21
SGLT1 inhibitors as the test set are shown in Fig. S2 and
Fig. S3 (see Supplementary material), respectively.

Diverse conformation generation

Before starting the pharmacophore generation process, con-
formation analysis of the molecules was performed using the
poling algorithm [30]. The poling algorithm eliminates much
of the redundancy in conformation generation and improves
the coverage of conformational space. The number of
conformers generated for each compound was limited to a
maximum of 255 with an energy range of 20 kcal mol−1. The
conformers of the training set were generated using the BEST
conformation model generation method of diverse confor-
mation generation protocol implemented in DS, which
provided complete and improved coverage of conformational
space by performing a rigorous energy minimization and
optimizing the conformations in both torsional and cartesian
space using the poling algorithm [31, 32].

Generation of the 3D pharmacophore

SGLT2 and SGLT1 inhibitors pharmacophore models were
developed using the HypoGenmodule implemented in DSwith
the conformers generated for the molecules in the training set,
respectively [31]. During pharmacophore hypotheses genera-
tion, four kinds of chemical features, including hydrogen bond
acceptor (HBA), hydrogen bond donor (HBD), hydrophobic
(H) and ring aromatic (RA), were selected. The value for
“maximum excluded volumes (EV)” and the uncertainty value
for the compound activity were set to 5 and 3, respectively,
while other parameters were set to their default values.

Pharmacophore model validation

Validation of a quantitative model is performed in order to
determine whether the developed model is able to identify
active structures and forecast their activities precisely. The
quality of pharmacophore can be validated using test set,
Fischer’s randomization and decoy set methods.

Test set

This method is used to elucidate whether the generated
pharmacophore model is proficient to predict the activities
of the compounds other than the training set. The conforma-
tion generation of the test set was carried out in a similar way
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like training set compounds. The conformers were subse-
quently mapped using the ligand pharmacophore mapping
protocol with the best search option available in DS.

Fischer randomization test

The purpose of this validation is to verify whether there is a
good correlation between the chemical structures and
biological activities of compounds. The validation was
done by generating random spreadsheets for training set
molecules, which randomly reassigned activity values to each
compound and subsequently generated the hypotheses using
the same features and parameters originated for the original
pharmacophore hypothesis. To achieve the confidence level of
95%, 19 random spreadsheets were generated. The signifi-
cance of the hypotheses was calculated using the following
formula : 1� 1þ Xð Þ=Y½ � � 100; Here; X ¼ 0 and Y ¼
19þ 1ð Þ; S ¼ 1� 1 þ 0ð Þ= 19 þ 1ð Þð Þ½ � � 100% ¼ 95%
[33].

Decoy set

The decoy set is used to evaluate the discriminative ability
of the best hypothesis by computing goodness of fit score
(GF) and enrichment factor (EF). Decoy set contained
active compounds of SGLT2 inhibitors and inactive com-
pounds [34]. The screening was performed using the ligand
pharmacophore mapping protocol implemented in DS,
parameters such as total number of compounds in the hit
list(Ht), number of active percent of yields, percent ratio of
actives in the list, EF, false negatives, false positives and
GF were calculated.

Evaluation of the specificity of hypothesis to SGLT2
inhibitors

As it has been mentioned, SGLT2 and SGLT1 are two
types of human SGLT proteins. Their amino acid
sequence identity reaches 59% [35]. Thus, most inhib-

Fig. 1 Chemical structures of 25 SGLT2 inhibitors in training set together with their experimental inhibitory activities (IC50 values, in parentheses)
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itors targeting against SGLT2 are also likely to target
against SGLT1. Furthermore, a specific pharmacophore
model of SGLT2 inhibitors can discover some inhibitors
selectively targeting against SGLT2. In order to examine
the specificity of the pharmacophore model of SGLT2
inhibitors, firstly, compare the chemical features of the
best pharmacophore models of SGLT2 and SGLT1

inhibitors; secondly, collect a set of compounds with both
SGLT2 and SGLT1 inhibitory activity, subsequently
mapped with the best pharmacophore models of SGLT2
and SGLT1 inhibitors, respectively, using the ligand
pharmacophore mapping protocol available in DS. The
specificity was evaluated by the correlation between
selectivity and fit values, as well as mapped features.

Fig. 2 HypoGen pharmaco-
phore hypothesis for SGLT2
inhibitors. (a) The best pharma-
cophore model Hypo1SGLT2. (b)
3D spatial relationship and dis-
tance constraints of the
Hypo1SGLT2. (c) Hypo1SGLT2
aligned to the most active com-
pound in training set. (d)
Hypo1SGLT2 aligned to the most
inactive compound in training
set. The features are color coded
with magenta, hydrogen bond
donor; cyan, hydrophobic;
orange, ring aromatic; gray,
excluded volume

Table 1 Results of top ten pharmacophore hypotheses of SGLT2 inhibitors generated using training set

Hypo no. Total cost Cost differencea RMSDb Correlation(r) Featuresc Max. fit

SGLT2 Hypo1 116.73 68.76 0.85 0.955 HBD, 3H, RA, 5EV 13.64

Hypo2 120.20 65.28 0.94 0.945 HBA, 3H, RA, 2EV 13.62

Hypo3 126.37 59.12 1.20 0.908 HBA, 3H, RA 13.14

Hypo4 129.03 56.46 1.29 0.894 HBA, 3H, RA 13.11

Hypo5 136.93 48.56 1.57 0.835 HBD, 3H, RA, EV 10.49

Hypo6 137.34 48.15 1.52 0.847 HBA, 3H, RA 13.20

Hypo7 139.76 45.72 1.62 0.824 HBD, 3H, RA 11.97

Hypo8 140.05 45.43 1.61 0.825 HBA, 3H, RA 12.50

Hypo9 140.15 45.34 1.64 0.817 HBA, 3H, RA 10.83

Hypo10 140.26 45.23 1.49 0.860 HBA, HBD, H, RA 12.28

a “+”indicates that the estimated IC50 is higher than the experimental IC50; “-” indicates that the estimated IC50 is lower than the experimental
IC50

b Fit value indicates how well the features in the pharmacophore map the chemical features in the molecule
c Activity scale: highly active (IC50 < 10 nM, +++), moderately active (10nM ≤ IC50 < 1000 nM, ++), and inactive (IC50 ≥ 1000 nM, +)
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Database screening

The specific HypoGen pharmacophore hypothesis was used
as a 3D structural query for retrieving potent molecules from

chemical databases including MayBridge and NCI. For each
molecule in the database, 255 conformers were generated with
the fast conformer generation method, allowing a maximum
energy of 20 kcal mol−1 above that of the most stable

Table 2 Experimental and predicted IC50 values of the training set compounds based on the pharmacophore model Hypo1SGLT2

Compound no. Exp. IC50 (nM) Predicted IC50 (nM) Errora Fit valueb Experimental scalec Predicted scalec

1 0.3 0.41 +1.4 11.222 +++ +++

2 0.49 0.18 −2.7 11.583 +++ +++

3 0.797 1.07 +1.3 10.811 +++ +++

4 0.927 2.04 +2.2 10.531 +++ +++

5 1.2 5.59 +4.7 10.093 +++ +++

6 3.51 8.79 +2.5 9.896 +++ +++

7 13.4 7.80 −1.7 9.948 ++ +++

8 16.6 47.12 +2.8 9.167 ++ ++

9 17 30.73 +1.8 9.352 ++ ++

10 18.2 20.12 +1.1 9.536 ++ ++

11 21.6 5.35 −4.0 10.112 ++ +++

12 22 204.06 +9.3 8.53 ++ ++

13 24 48.09 +2 9.158 ++ ++

14 52 72.43 +1.4 8.98 ++ ++

15 103 20.13 −5.1 9.536 ++ ++

16 110 113.11 +1.02 8.787 ++ ++

17 130 44.72 −2.9 9.19 ++ ++

18 131 91.73 −1.4 8.877 ++ ++

19 435 178.95 −2.4 8.587 ++ ++

20 610 830.91 +1.4 7.92 ++ ++

21 865 790.17 −1.1 7.942 ++ ++

22 1870 1521.01 −1.2 7.658 + +

23 1870 1841.58 −1.01 7.575 + +

24 28217 10132.80 −2.8 6.834 + +

25 50000 15019.30 −3.3 6.66 + +

a “+”indicates that the estimated IC50 is higher than the experimental IC50; “-” indicates that the estimated IC50 is lower than the experimental
IC50
b Fit value indicates how well the features in the pharmacophore map the chemical features in the molecule
c Activity scale: highly active (IC50 < 10 nM, +++), moderately active (10nM ≤ IC50 < 1000 nM, ++), and inactive (IC50 ≥ 1000 nM, +)

Fig. 3 HypoGen pharmaco-
phore hypothesis for SGLT1
inhibitors. (a) The best pharma-
cophore model Hypo1SGLT1. (b)
3D spatial relationship and dis-
tance constraints of the
Hypo1SGLT1. The features are
color coded with green, hydro-
gen bond acceptor; cyan,
hydrophobic; gray, excluded
volume
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conformation. The database screening was carried out using
ligand pharmacophore mapping protocol implemented in
DS with best/flexible search option. The retrieved com-
pounds were filtered by restricting the estimated activity
value less than 100 nM and the obtained compounds were
further screened in accordance with the Lipinski’s rule of
five to make them more drug-like.

Results and discussion

Pharmacophore model

Pharmacophore model for SGLT2 inhibitors

Pharmacophores were computed by Hypogen algorithm
implemented in DS and top ten hypotheses of SGLT2
inhibitors (Table 1) were exported. The best hypothesis
(Hypo1SGLT2, Fig. 2a) consisted of one HBD, three H, one
RA and five EV features, and has a correlation coefficient of

0.955, cost difference of 68.76, RMSD of 0.85. The fixed
and null cost values are 106.187 and 185.485, respectively.
The 3D space and distance constraints of these pharmaco-
phore features are shown in Fig. 2b. The most active and
inactive compounds in the training set were aligned in
Hypo1SGLT2 as shown in Fig. 2c, d, respectively. Further-
more, in order to verify the prediction accuracy of
Hypo1SGLT2, we classified all the training set compounds
into three sets based on their activity values: highly active
(IC50 < 10 nM, +++), moderately active (10nM ≤ IC50 <
1000 nM, ++), and inactive (IC50 ≥ 1000 nM, +). Table 2
shows the experimental and estimated inhibitory activities of
the 25 training set molecules. Obviously, most compounds
are correctly predicted except compound 8 (Error: -1.7) and
compound 11(Error: -4.0).

Pharmacophore model for SGLT1 inhibitors

Ten hypotheses of SGLT1 inhibitors in Table S1 (see
Supplementary material) were exported in the same way as
SGLT2 inhibitors. The best hypothesis (Hypo1SGLT1,
Fig. 3a) consisted of three HBA, one H, and five EV
features, and has a correlation coefficient of 0.920, cost
difference of 49.25, RMSD of 1.00. The fixed and null cost
values are 96.666 and 170.323, respectively. The 3D space
and distance constraints of these pharmacophore features
are shown in Fig. 3b. Table S2 presents experimental and
predicted IC50 values of the training set compounds based
on the pharmacophore model Hypo1SGLT1.

Validation of the pharmacophore model

Prediction with test set molecules

An independent test setSGLT2 composed of 85 SGLT2
inhibitors, was used to evaluate the predictive ability of
the Hypo1SGLT2. Table S3 shows the predicted values of

Fig. 4 Plot of the correlation (r) between the experimental activity
and the predicted activity by Hypo1SGLT2 for 85 test molecules (in
cyan) and 25 training set molecules (in red)

Fig. 5 The difference in costs
between HypoGen runs and the
scrambled runs. The 95%
confidence level was selected
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Table 3 Statistical parameter
from screening test set
molecules

a [(Ha/4HtA)(3A + Ht) ×
(1-((Ht-Ha)/(D-A)))]
b (Ha × D)/(Ht × A)

No. Parameter Values

1 Total number of molecules in database (D) 459

2 Total number of actives in database (A) 59

3 Total number of hit molecules from the database (Ht) 63

4 Total number of active molecules in hit list (Ha) 56

5 %Yield of actives [(Ha/Ht) × 100] 88.89%

6 %Ratio of actives [(Ha/A) × 100] 94.92%

7 False negatives [A-Ha] 3

8 False positives [Ht-Ha] 7

9 Goodness of fit scorea (GF) 0.888

10 Enrichment factorb (EF) 6.92

Fig. 6 Chemical structures of 30 compounds with both SGLT2 and SGLT1 inhibitory activity
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inhibitory activity of the test setSGLT2 compounds together
with their corresponding experimental values. The result
demonstrates that compounds of all activity scales were
predicted properly. Furthermore, a regression analysis (Fig. 4)
of the experimental and predicted inhibitory activity values
for the test compounds gives a fairly good correlation
coefficient (r) of 0.9084. Another independent test setSGLT1
composed of 21 SGLT1 inhibitors was used to evaluate the
predictive ability of the Hypo1SGLT1 (Table S4). The results
demonstrate that we have successfully developed two reliable
pharmacophore models with high predictivity of Hypo1SGLT2
and Hypo1SGLT1, respectively.

Fischer randomization test

Fischer randomization test was used to further evaluate the
statistical relevance of Hypo1SGLT2 and Hypo1SGLT1. The
test results indicate that Hypo1SGLT2 and Hypo1SGLT1 are
meaningful and successful. Figure 5 clearly exhibits that the
Hypo1SGLT2 was not generated randomly.

Decoy set

The decoy set of Hypo1SGLT2 contains 59 active com-
pounds and 400 inactive compounds. A set of 59 active

Table 4 The experimental IC50 values (nM) for both the SGLT2 and SGLT1, selectivity (denoted as the ratio between the IC50 values against
SGLT2 and SGLT1) and fit values, as well as the mapped features

Compound no. IC50 (nM) Selectivity Fit value Mapped featurea

Hypo1SGLT2 Hypo1SGLT1

SGLT1 SGLT2 SGLT2/SGLT1 SGLT1 SGLT2 HBD H RA HBA H

60 60000 16 1/3750 8.626 9.942 + ++ + - +

5 4200 1.2 1/3500 8.11 10.097 + ++ + + -

142 20000 6.7 1/3250 8.738 8.813 + ++ + - +

37 10000 3.6 1/2778 7.329 10.016 ++ + + - +

135 31000 12 1/2583 7.139 8.622 + ++ + - +

49 >2200 0.9 <1/2222 7.185 11.139 ++ ++ ++ - +

26 >2200 0.9 <1/2222 9.14 10.2 + ++ + - +

143 16000 7 1/2286 6.763 10.246 + ++ + - -

4 2050 0.927 1/2211 7.169 10.519 ++ ++ + - +

138 43000 22 1/1955 6.809 10.161 + + ++ - -

44 10000 6 1/1667 8.294 9.95 + + + - +

91 103000 110 1/936 6.567 9.135 + + + - -

144 1200 1.4 1/857 9.829 9.473 + + + ++ -

137 35000 43 1/814 7.21 8.557 + + + - +

125 134000 170 1/788 7.762 9.898 + ++ + - +

57 4270 10.8 1/395 6.429 9.962 + + + - -

29 260 1.68 1/155 7.613 10.115 + + ++ - +

82 10500 68 1/154 6.652 9.24 + + + - -

145 890 6.7 1/132 9.839 9.473 + + + ++ +

48 885 6.7 1/131 9.839 9.473 + + + + +

141 50000 1000 1/50 6.988 8.507 - + + - +

146 565 13.4 1/42 7.272 8.599 - + + + +

94 3610 121 1/30 8.097 8.91 + + + + -

109 45000 1700 1/26 6.855 7.197 + - + - +

147 45000 1700 1/26 7.987 8.335 + - + - +

139 45000 1700 1/26 6.927 9.154 + + + - +

102 3050 394 1/8 7.477 7.732 - + + - +

148 145 24 1/6 8.226 7.902 + - + + +

106 5000 1000 1/5 8.129 8.21 - + + + -

149 611 163 1/4 7.477 7.732 - + + + +

a “++” means that the compound has mapped the feature very well, “+” means less well, “-”means did not mapped
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compounds has been collected from different references [1,
13–29]. The total number of compounds in the hit list (Ht),
number of active percent of yields, percent ratio of actives
in the hit list, false negatives, false positives, GF and EF are
listed in Table 3. The false negatives, false positives, GF and
EF are 3, 7, 0.888 and 6.92, respectively, indicating
Hypo1SGLT2 with high efficiency of screening.

Evaluation of the specificity of Hypo1SGLT2 to SGLT2
inhibitors

Comparison of chemical features between Hypo1SGLT2
and Hypo1SGLT1

As mentioned above, Hypo1SGLT2 consisted of one HBD,
three H, one RA and five EV features (Fig. 2a, b); on the
other hand, Hypo1SGLT1 consisted of three HBA, one H,
and five EV features (Fig. 3a, b). These results indicate that
the pharmacophore models derived from ligands of SGLT2
and SGLT1 are different from each other, which is
understandable as it has been demonstrated that the
pharmacophore models are intensely dependent on the
training set compounds.

The specificity of Hypo1SGLT2

We collected a set of 30 compounds (Fig. 6) with both SGLT2
and SGLT1 inhibitory activity. Then for each compound in
the compound set, the best fit analysis using Hypo1SGLT2 and
Hypo1SGLT1 was preformed. Table 4 presents the experi-
mental IC50 values (nM) for both SGLT2 and SGLT1,
selectivity and fit values, as well as mapped features. Clearly,
the higher selectivity of SGLT2 inhibitory activity appears
the higher fit values with Hypo1SGLT2 and lower fit values
with Hypo1SGLT1 or vice versa. This phenomenon can also
be reflected through the mapped features of selective SGLT2
inhibitors. Highly selective SGLT2 inhibitors are mapped
with Hypo1SGLT2 much better than that of Hypo1SGLT1.
Based on this analysis, we can conclude that Hypo1SGLT2 is
the specific pharmacophore model of SGLT2 inhibitors.

Database screening

The validated specific Hypo1SGLT2 was used as a 3D
structural query for retrieving compounds from MayBridge
(59 652 compounds) and NCI (238 819 compounds). As a
result, 87 and 326 compounds were retrieved from May-
Bridge and NCI respectively, with estimated activity value
less than 100 nM. These obtained compounds were further
refined according to Lipinski’s rule of five to make them
more drug-like. Finally, a total of 56 compounds passed this
filtration. Additionally some of the molecules have been
shifted for further experimental assay study.

Conclusions

In this study, chemical features based pharmacophore model-
ing of SGLT2 inhibitors have been developed using 3D QSAR
pharmacophore generation protocol available in DS 2.1. The
best quantitative pharmacophore model, Hypo1SGLT2, was
characterized by the best correlation coefficient (0.955), the
lowest total cost value (116.73), the highest cost difference
(68.76), and the lowest RMSD (0.85), and consisted of one
HBD, three H, one RA and five EV features. Hypo1SGLT2
was further validated by test set, Fischer randomization test
and decoy set methods. The test set containing 85
compounds was used in investigating the predictive ability
of Hypo1SGLT2 and resulted with a correlation coefficient of
0.908, indicating a good predictive capacity. Moreover, other
validation methods also have provided reliable results on the
strength of Hypo1SGLT2. Correspondingly, in order to
evaluate the specificity of Hypo1SGLT2 to SGLT2 inhibitor,
a comparison of chemical features between Hypo1SGLT2 and
Hypo1SGLT1 was made. Furthermore, Hypo1SGLT2 and
Hypo1SGLT1 were also mapped with compounds with both
SGLT2 and SGLT1 inhibitory activity. The results clearly
demonstrate that Hypo1SGLT2 can distinguish selective
inhibitors of SGLT2 from those of SGLT1, and the HBD
and RA features are likely to be essential to the specificity of
Hypo1SGLT2. We can conclude that the Hypo1SGLT2 truly
reflects the features of SGLT2 inhibitors; furthermore,
Hypo1SGLT2 is also a specific pharmacophore model of
SGLT2 inhibitors. Therefore, the specific pharmacophore
model of SGLT2 inhibitors should be helpful in identifying
novel lead compounds with improved inhibitory activity
through 3D database searching, providing valuable tools in
the design of new SGLT2 inhibitors.
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